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Abstract. A geometric theory in 10+1 dimensions is developed starting from a transition S10 → S3×S7  
followed by dynamical compactification in which S7 becomes the compactified particle dimensions in a 
Kaluza-Klein theory, and the spatial S3 inflates. The closed space acquires a vacuum winding 
π7(S3)=π4(S3)=Z2 with SO(3), SU(2), U(1) eigenvalues (0,–½ 1) and chirality Z2 = {L, R}. This 
vacuum breaks the symmetry of the particle space SU(4)/SU(3) ≅ S7 to (Spin(3)⊗SU(2)⊗U(1))/Z3 

giving 12 topological monopoles by π7(S4) = Z×Z3×Z4 with spin ½ giving 3 families of 4 fermionic 
monopoles that split into SO(3) coloured and colourless SU(2) doublets with the same charges as the 
fundamental particles. Topological conditions in the classical theory give a definition of Planck's 
constant ħ=c3χ2/G as the physical scale of the topological spin charge, and define the Weinberg angle as 
tan2θW=5/16. Closed formulae for e, g, g', mZ, mW, mH are derived in the classical theory. The 
topological monopoles take the form of rotating compactified black holes in the dimensionally reduced 
theory, where their ergo-region can trap virtual-radiation sufficient to cancel the rest mass of the black 
hole. This leads to the derivation of a quantum field theory for the topological monopoles where the 
Kaluza-Klein dimensional reduction gives a Lagrangian containing the terms of the Standard Model, 
including a quartic scalar field term which gives the coupling constant value λ=1/8 for the Higgs term. 

1. Introduction 
The development of a pure geometrical Kaluza-Klein theory [1-5] for the known particle interactions in 
the original spirit of Kaluza [1] was apparently shown not to be possible by Witten [6] because the 
chirality of electroweak interactions couldn't be generated. However, this result no longer holds for a 
closed universe, where a chiral vacuum becomes possible with a topological winding at the level of the 
whole closed universe which breaks the symmetry of the particle dimensions in a Kaluza-Klein theory, 
and allows for topological monopoles as defects in the local structure of the space. The closure of the 
space also gives rise to a dynamical compactification [7] mechanism driven by the transfer of radiation 
from the non-spatial dimensions to the spatial dimensions [8]. This transfer of radiation gives a see-saw 
process where the compactification drives a form of inflatonless inflation [9] in the spatial dimensions.  
 This paper imposes the closure condition on the the assumption of 10+1 dimensions to give a 
unified universe of S10, and so the geometrical theory will be referred to as S10 unified field theory 
(STUFT). This metric-field theory introduced in [10] contains no matter fields or any other fields, and 
so is a a pure metric field theory in which the higher dimensional universe is empty of matter, as was 
originally assumed by Kaluza [1] and envisaged by Einstein [11,12]. However, the field equations of 
Einstein gravity extended to any number of spatial dimensions support metric-wave solutions as the 
dimensional extension of gravitational waves in General Relativity, and so the universe is assumed to 
initially contain metric-wave radiation. This gives radiation that realises the dynamic compatification of 
dimensions through a compactification-inflation see-saw mechanism of radiation transfer. 
 The metric-field equations are assumed to describe a real “fabric of space” as a direct extension to 
the “fabric“ conceptualisation of space-time in General Relativity. This specifically means that the 10 
initially equal spatial dimensions are assumed to be physical dimensions, and are not just the effective 
dimensions of a projection theory [13-16]. This physicality assumption is further extended with the 
following three conditions: 
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1) if there is contact of the “fabric of space” at two distinct points in the space, then a bridge can 

form between those two points 
2) the “fabric of space” can form holes when the topology allows 
3) the space is physically closed 

 
The first condition is that the Einstein-Rosen bridge [17] solution of General Relativity can be extended 
to 10+1 dimensions and can form upon self-contact of the “fabric of space” given a suitable stress-
energy term. The second physical assumption is that when the topology allows, metric-field radiation of 
sufficient energy can create holes in the space. The critical assumption is that the universe is closed, as 
in combination with the previous two conditions it gives the topology for the formation of a non-trivial 
winding in the space and a spectrum of 12 topological defects [10].  
 The topological conditions of STUFT are outlined in section 2 and the compactification-inflation 
see-saw given in section 3 [10]. The standard dimensional reduction techniques of Kaluza-Klein 
theories are applied in section 4 to obtain the dimensionally reduced classical theory. The topological 
conditions applying in the dimensionally reduced theory gives non-singular topological monopoles, as 
is the case for the “solitons” of other Kaluza-Klein theories [18,19]. This no singularity condition is 
applied to the Kerr metric in section 5, where the properties of the space gives a geometric definition of 
Planck's constant, together with closed formulae for the coupling constants, the energy density of the 
topological winding of the space, the vector-field masses and the scalar-field mass [10], which all show 
agreement with those of the Standard Model. The classical monopole theory is then considered in 
section 6, where difficulties in the classical theory require a change in descriptive framework. It is 
shown in section 7 that assuming the topological monopoles possess a wave property enables the 
derivation of a quantum field theory with local symmetry SO(3)⊗SU(2)⊗U(1), but where the 
topological monopoles with SO(3) colour charge possess 1/3 electric charges. The Lagrangian terms of 
the quantum field theory derived from the dimensionally reduced classical theory of section 4 include 
those of the Standard Model, up to this change in local colour symmetry group. 

2. Electroweak Vacuum and Particles 
The metric-field equations in 10+1 dimensions will be taken to be that of Einstein gravity with a stress-
energy tensor for the energy density of metric-waves 
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κ T
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and the universe is assumed to initially contain an energy density ρ0 of metric-waves,. The Ricci scalar 
of the Einstein action encapsulates isotropy and homogeneity conditions, which also give the metric for 
a closed space in any number D of spatial dimensions as being the Friedman-Robertson-Walker metric 
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for a sphere SD with time dependent radius a(t) and generalised angle element ΩD–1. For stress-energy 
tensor components Ttt = ρc2, Tii = p, the field  equations for a(t) are given by 
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which gives the SD cosmology the generic character of the radius of the sphere increasing up to some 
maximum radius and then decreasing. The point of maximum radius for the S10 cosmology will be 
taken to mark the time t0=0 at which point the radiation energy density is ρ0. 
 As the S10 shrinks from its maximum radius at t0=0, the energy density of the metric-wave radiation 
ρ will increase, which in the classical metric field theory will be associated with an increase in the wave 
amplitude of the metric-waves. If any of these metric-wave modes are such that they oscillate 
orthogonal to the surface of the sphere S10, then these two factors will inevitably lead to a situation 
where wave crests collide internally to the sphere. The “fabric of space” is assumed to be such that this 
can result in the formation of an internal Einstein-Rosen bridge [17], in which case the topology of the 
sphere SD is then changed to that of a torus Tn+m=Sn×Sm. This is the critical transition from which all 
else follows, and so it is assumed that either the given mechanism leads to such an internal bridge, or 
extending the Einstein action with additional curvature terms leads to the existence of some other 
mechanism by which an internal bridge forms. In any case, the net result would be the insertion of a 
tunnel through SD, where the fusing would be topologically equivalent to two internal hemispherical 
depressions in the sphere meeting and fusing to form a tube. The homotopy group πn(Sn-1) = Z2 ∀n>2 
shows that the meeting of such hemispherical depressions in Sn at their equatorial sphere Sn–1 can result 
in a torus Tn+m with a non-trivial winding, where πm(Sn) = Z2 is required for consistency 
 
  S10 →  T2+8 = S2×S8   as π8(S2) = Z2 

  S10 →  T3+7 = S3×S7   as π7(S3) = Z2 

  S10 →  T4+6 = S4×S6   as π6(S4) = Z2 
 
The second possibility is selected as it involves the S3 of a closed spherical spatial cosmology given by 
the Friedman-Robertson-Walker metric. This gives S7 as being the non-spatial dimensions, where the 
given homotopy group is for a map from S7 to the whole S3 spatial cosmology, and so would give a 
non-trivial vacuum structure. The sphere S7 is a Hopf fibre-bundle [20,21] of an S3 fibre over an S4 
base-space, and the non-trivial map of the given homotopy group involves a map from the S4 base-
space to the S3 cosmology, as π7(S3) = π4(S3) = Z2. 
 The map from S4 to S3 is an example of the homotopy group relation πn(Sn-1) = Z2 ∀n>2, where the 
equatorial sphere S3 of S4 is mapped to the spatial cosmology S3. This gives the topological transition 
as leading to a sphere decomposition sequence that is locally of the form 
 
  S10 →  S3×S7 → S3×(S3×S4) → S3×(S3×(S3×S1)) 
 
The first step is the transition due to the formation of an Einstein-Rosen bridge, the second step is the 
separation of S7 into S3 fibre and S4 base-space, and the last step is the sphere S3 being split off by the 
map to the spatial S3. As it is the sphere S7 which is mapped to the spatial sphere S3, the twisted torus 
T3+7=S3×S7 can be identified as having an inner sphere S7 that is “rotated” in going around the outer 
sphere of S3. This identification for the sphere composition of the torus T3+7 allows for the S3 of the S4 
base-space to be identified with the group space of the symmetry group Spin(3) ≅ SU(2) and S1 with 
that of U(1), such that group eigenvalues can be found for this non-trivial vacuum structure.  
 The dimensional reduction of the maps Sn to Sn-1 ∀n>2 can generically be given by the coordinate 
parametrisation xn–1 = xξ cosξ, xn = xξ sinξ such that the radius of the sphere r2 = x0

2 + … + xn-2
2 + xξ2 is 

reduced to that of Sn-1. For S4, this parametrisation reduces the radius r2 = x0
2 + x1

2 + x2
2 + xξ2 to that of  

S3, where the x3, x4 coordinates define the S1 group space of U(1) with group eigenvalue 1, and the 
coordinates x0, x1, x2, xξ define the S3 group space of SU(2) with group eigenvalue ½. As the S3 fibre of 
the space S7 doesn't participate in the map to the spatial S3, the corresponding group eigenvalue is 0, 
which selects the group Spin(3) as the double cover of SO(3) with group eigenvalues including 0.  
 The map π7(S3) = π4(S3) = Z2 specifies a non-trivial winding in the orientation of the S3 sub-space 
of the S4 base-space of S7 in going around the outer sphere of S3 in the torus T3+7=S3×S7, which implies 
that the rotation sense of the winding can be related to the sense of “going around” the spatial S3. Such 

3 



   

relative rotation sense is simpler for the case of non-trivial twists in the torus T2=S1×s1, where S1 
denotes the outer circle of the torus and s1 the cross-section. Non-trivial twists in T2 are given by the 
homotopy group π1(S1) = Z, but attention will be restricted to the cases {–1,+1}. In going clockwise 
around the outer S1 of the torus T2, the inner s1 circle is either rotated clockwise or anti-clockwise by 
2π, where using the right-hand rule as the definition of rotation sense gives the labels of left and right 
for {–1,+1}. It should be noted that the choice of clockwise and the right-hand rule to define rotation 
sense is arbitrary, but once that choice is made the two cases of the twisted T2 torus can be given the 
chiral labels {L, R}. For the non-trivial vacuum of π4(S3) = Z2 the rotation sense in the spatial S3 is 
defined by way of the rotation group SU(2), where the right-hand rule gives the same chiral labels. A 
similar arbitrary choice of rotation sense has to be made for the internal particle base-space S4, where 
following the convention of the Standard Model gives the S4 space orientation as being (–½,1). This 
gives the twisted vacuum as having (SO(3),SU(2),U(1)) eigenvalues (0,–½,1) with the two possibilities 
of the non-trivial map π7(S3) = π4(S3) = Z2 having spatial chiralities {L, R}. For the local colour 
symmetry group being SO(3) this would give the colour, isospin and hypercharge eigenvalues of the 
electroweak vacuum in the Standard Model, where the electroweak vacuum has chirality L. It was 
claimed in [6] that the chiral vacuum of the Standard Model cannot be generated for a Kaluza-Klein 
theory, but that result was for flat space-time whereas STUFT considers a closed cosmology. 
 The map from the S4 base-space of S7 to the spatial S3 breaks the equivalence of the 7 non-spatial 
dimensions, leaving the symmetry of the S3 (colour) fibre intact but breaks the symmetry of the S4 
(electroweak) base-space. This symmetry breaking leaves intact the symmetry of a closed S1 embedded 
in the S4 base-space, where the (SU(2), U(1)) eigenvalues (–½,1) show a compact embedding for the 
unbroken U(1) symmetry with group embedding angle tanφW = ½. For any transition where manifold G 
is reduced to H, the homotopy group relation π2(G/H) = π1(H) shows that topological monopoles arise 
when π1(H)≠0 [22], which will be true for the compact embedding of the unbroken U(1) symmetry.  
 The group embedding angle tanφW=½ for the unbroken U(1) symmetry differs from the Weinberg 
angle tanθ W≈0.55 [23-25] in the Standard Model. However, there is a distinction between the physical 
spaces which possess a physical scale, and the group spaces of the unitary groups SU(2) and U(1), 
which are unit spheres. The group angle φW gives the embedding of the unbroken U(1) group in the 
broken SU(2) and U(1) symmetries, whereas the expression of the Weinberg angle tanθ W =g'/g is in 
terms of the SU(2) and U(1) coupling constants g and g'. In the dimensionally reduced Kaluza-Klein 
theory these coupling constants give the physical scale of the compactified dimensions. So in STUFT, 
the Weinberg angle will be expressed in terms of the physical scales of the isospin S3 (radius rI) and 
hypercharge S1 (radius rY) spaces as 
 

  W
I

Y
W r

r φθ tantan =  

 
where tanθ W > tanφW indicates that rY > rI. Although the vacuum map S4 → S3 could be expected to 
distort the physical shape of the S4 base-space, the dimensional reduction of S4 to S3 gives an anomaly 
in the definition of the physical scales of rY and rI. 
 The surface of a sphere Sn is geometrically defined to be the set X of coordinate tuples (x0, …, xn) in 
(n+1)-dimensions for a given radius The coordinate parametrisation that picks out an S1 from Sn to give 
the equatorial sphere Sn-1 results in the subset Y⊂X of coordinate tuples (x0, …, xn–2, xξ) in n-
dimensions. In the set X, each coordinate xi has the same range [–rn,+rn] and the same mean square over 
the set X of 〈xi

2〉 = rn
2/(n+1) ∀i. The subset Y of the equatorial sphere Sn-1 consists of the same 

coordinates xi for i=0, …, n–1 with the same root-mean square values, and so the calculated radius rn-1 
of the equatorial sphere Sn-1 in terms of the coordinates of Sn is 
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For the map S4 → S3 where the hypercharge radius rY is the radius of the full S4 and the isospin radius  
rI is the radius of the equatorial sphere S3, the Weinberg angle θ W  will be given by 
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This closed formula for tanθ W gives sin2θ W=5/21≈0.2381 and cos2θ W=16/21, which compares with the 
experimental range of sin2θ W= 0.2312 – 0.2397 [23-25]. 
 With the value of the group embedding angle tanφW=½ being modified by a dimensional reduction 
anomaly in physical scale, the irrational value of the Weinberg angle tanθW is compatible with a 
compact embedding for the unbroken U(1) symmetry, for which the theory will contain topological 
monopoles. However, there will not just be a single type of topological monopole because the initial 
apportioning of the dimensions of the S7 space into S3 fibre and S4 base-space will not be unique. For 
the trivial vacuum, these different ways to apportion these non-spatial dimensions will be equivalent, 
but for the non-trivial vacuum they will not. The different ways for the space S7 to be apportioned to 
the S4 base-space is given by the homotopy group for the mapping of S7 to S4 

 
  π7(S4) = Z×Z12 = Z×Z3×Z4 
 
The space S7 corresponds to the space of a quotient G/H of Lie Groups G and H, where of the possible 
group quotients giving S7, SU(4)/SU(3) ≅ S7 is selected by the symmetry breaking of the non-trivial 
winding of the space. The SU(4) symmetry acting over S7 is broken by the non-trivial vacuum, where 
the standard pattern of SU(n) symmetry breaking to SU(n-p)⊗SU(p)⊗U(1) gives 
 
  SU(4) → (SU(2) ≅ Spin(3)) ⊗ SU(2) ⊗ U(1) 
 
which has the same local form of SO(3)⊗SU(2)⊗U(1) as found for the non-trivial vacuum. However, 
the Z3 centre of the group quotient SU(4)/SU(3) gives the full symmetry group as being 
 
  (Spin(3) ⊗ SU(2) ⊗ U(1))/Z3                    (5) 
 
where this Z3 of the colour fibre gives a 1/3 factor to the U(1) eigenvalues of the monopoles with SO(3) 
eigenvalue |λC| = 1. So the U(1) charge eigenvalues are given by 
 

  YIQ λλλ 2
1+=   where monopoles colouredfor  

monopoles colourlessfor  1

3
1

−
=Yλ            (6) 

 
which gives the particle identification for the 3 by 4 table of topological monopole eigenvalues shown 
in Table 1 [10]. 
 
Table 1: SO(3), SU(2), U(1) eigenvalues for the SU(3) co-sets with particle identification 

 
 SU(3) co-set 1/3  2/3  1 

 SU(2)  +½   U(1)    2/3  (u+2/3)  U(1)    2/3  (c+2/3)  U(1)    2/3  (t+2/3)  SO(3)    1 
 SU(2)  –½   U(1)  –1/3  (d–1/3)  U(1)  –1/3  (s–1/3)  U(1)  –1/3  (b–1/3) 
 SU(2)  +½   U(1)    0     (νe)  U(1)    0     (νµ )  U(1)    0     (ντ )  SO(3)    0 
 SU(2)  –½   U(1)  –1     (e–1)  U(1)  –1     (µ–1)  U(1)  –1     (τ–1) 
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These topological monopoles are not point defects with a singularity, as their topological basis gives 
them the form of a spatial sphere S2  being wrapped around S7 such that the configuration cannot be 
unwound. In any SD space given by (2), space only exists within the surface and does not exist in either 
the interior or the exterior of the sphere SD. So when the spatial S2 of a topological monopole is 
wrapped around S7 devoid of space, the S2 surface of the topological monopole will mark the boundary 
of a real hole in space with the same finite radius as the S7 dimensions. This surface boundary would be 
in the locally flat space-time of the full S3 cosmology, and so this S2 surface would have to be in one of 
the representations of the Poincaré group, which for massive objects in their rest frame are just in terms 
of the rotation group. There are two distinct topological maps from the S3 group space of the SU(2) 
rotation group to the S2 surface around a spatial hole: the first is the same dimensional reduction of Sn 
to Sn-1 with homotopy group πn(Sn-1)=Z2 ∀n>2, for which the SU(2) group eigenvalues are ±½; and the 
second is the decomposition of the S3 fibre-bundle into S1 fibre and S2 base-space, where h: S3 → S2 is 
given by the parametrisation 
 
  h(x0, x1, x2, x3) = (x0

2 + x1
2 – x2 

2 – x3 
2, 2(x0 x3 + x1x2 ), 2(x1 x3 – x0x2 )) 

 
The mapping from the S2 base-space defined by this parametrisation to the S2 spatial sphere gives the 
monopole “hedgehog” [26,27] with homotopy group π3(S2)=Z and SU(2) group eigenvalues ±1.  
 The coordinate parametrisation x3 = xξ cosξ, x2 = xξ sinξ for S3 gives S2,  r2 = x0

2 + x1
2 + xξ2, with the 

U(1) rotation of x2, x3 in the group space being around the coordinate axis of xξ. When this is mapped to 
the spatial S2 it specifies a rotation about one of the axes in 3 spatial dimensions, which gives the 
topological construction of an object with SU(2) rotation group eigenvalues of ±½, and so the 
topological monopoles of Table 1 will also have the topological spin charge of ½ for fermions. 
 These two decompositions of S3 to S2 also give two distinct classes of topological monopole 
because the embedding of the unbroken U(1) in SU(2) means that a circle S1 must be selected from the 
isospin group space S3. The fibre-bundle decomposition of S3 where the S2 is mapped to the spatial S2 
gives a configuration where the U(1) generator IQ is mapped to the spines of the “hedgehog” to give an 
electric monopole. The coordinate parametrisation of S3 that leads to the homotopy group π3(S2)=Z2 
gives the topological basis for the Dirac magnetic monopole [28], where IQ is aligned with the z-axis. 
The Dirac string is removed by expressing IQ as being aligned in opposite directions in the northern and 
southern hemispheres of the S2 spatial sphere, with a 2π gauge rotation of U(1) at the equator joining 
the two hemispheres of the configuration together 
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This topological basis for the electric and magnetic monopoles gives the Dirac quantisation condition 
for the gauge rotation qeqm=½n in dimensionless units. It also means that STUFT will display 
electromagnetic duality and contain a spectrum of both electric and magnetic monopoles, which will be 
added to the energy-momentum tensor in the dimensionally reduced theory as a perfect fluid. 
 The monopoles of Table 1 also possess non-Abelian charges, where the issue of charge confinement 
is the same for both colour and isospin charges as their corresponding spaces are both S3 sub-spaces of 
the full S7 particle space. An electric monopole for the S3 fibre-bundle is given by the S2 base-space 
being mapped to the spatial S2 such that S1 fibre orientation is that of the monopole “hedgehog”.  
Consider a topological monopole/anti-monopole pair separated along some line, which gives the 
following 3 distinct topological regions: 
 

1) S2 base-space maps to the spatial S2 around the centre point of each monopole 
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2) S1 fibre maps to the spatial S1 around the line connecting the pair 
3) Outer region not enclosing either the monopoles or their connecting line 

 
The topology of regions 1 and 2 prevent any unwinding of the monopole configuration, but in region 3 
the configuration gives both the S2 base-space and the S1 fibre with no constraints. So the symmetry of 
the S3 particle space is free to act locally to unwind the configuration such that it is trivial in region 3. 
This is not the case for the Abelian charges where the particle space S1 lacks the degrees of freedom 
required to locally unwind the configuration. The topological constraints of regions 1 and 2 limit this 
local unwinding of the configuration to the formation of tube such that the charge flux only flows along 
the connecting line between the pair. As this charge flux must be the same at all points between the 
pair, the field energy will increase linearly with separation, and so there-exists a constant force of 
attraction for all separation distances. This is the classical confinement of non-Abelian charges, where 
the topology giving the Z3 factor in (5) for colour charges means that the same topological argument for 
classical confinement will also apply to configurations of 3 coloured monopoles. 

3. Compactification-Inflation See-Saw 
The previous section considered the consequences of the transition from S10 to S3×S7 due to the 
formation of an internal bridge, which included the appearance of matter in the form of topological 
monopoles. The effect of the transition on the metric-wave radiation assumed to be present in the initial 
S10 cosmology will be considered in this section, where the focus on metric-wave radiation within SD 
reveals an issue with regards to the interpretation of the cosmological constant Λ. The cosmological 
term Λ is not constant in an absolute sense, but is specifically constant with respect to variation in the 
metric gµν, which is clearly seen in the derivation of the metric field equations from the Einstein action 
as the variation is with respect to the metric gµν. The Friedman-Robertson-Walker metric for a general 
SD cosmology is parametrised by a radial scale factor a(t), where the radius a of the sphere SD is in the 
D+1 spatial dimension. So the SD metric gµν(a) is parametrised by an extra-dimensional variable a 
outside of the D-dimensional surface, and the cosmological constant Λ(a) can be similarly parametrised 
whist still being constant with respect to the metric gµν within the surface of the sphere SD.  
 Taking the covariant derivative of the field equations (1) for constant Λ gives the conservation law 
Tµν

;ν=0, but when the cosmological term is parametrised by the extra-dimensional variable a, the 
conservation law with only radiation in the space becomes 
 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++==

Λ
=Λ

V
VpDTga

da
dga

&
& )()( ;;; ρρκκ µν

ν
µν

ν
µν

ν  

 
For a(t) just varying with time, only the energy conservation equation will be modified 
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This can be rewritten in the infinitesimal form of the thermodynamic equation dE+PdV+VdP=0 
 

  01)( =Λ−++ VddVpDVd
κ

ρρ                    (7) 

 
where setting Λ(a) = Λp p(a) gives the term (Λp/κ)Vdp. The need for a cosmological pressure term is 
not particularly apparent in an open infinite space, but is more clearly necessary in a closed SD space.  
 The stress term Tii = p in the field equations of general relativity apparently says that pressure acts 
as a gravitational source, which is a bit misleading. For a gas inside some volume, the pressure of the 
gas is given by the force exerted against the bounding surface, which for the gas in the centre of the 
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volume is not a local description. As the force on the enclosing boundary is due to the momentum 
change of the gas particles, the local description of pressure is as a momentum density and this is what 
the stress term Tii = p is denoting. So it is momentum density which acts a gravitational source in 
general relativity, not pressure as such. For a space with a boundary, the metric-wave equations will 
possess a boundary term which would necessarily have to account for the pressure of radiation exerted 
against the boundary, whereas for a closed SD space there is no such boundary term, and the global 
pressure of radiation being applied to the space is not being accounted for by the stress-energy tensor. 
This would leave the global pressure effect of radiation within the space unaccounted for, but this 
omission is remedied by introducing a cosmological term Λ(a)=Λpp(a). Viewing radiation within a 
closed SD space from the perspective of the D+1 dimensions within which the sphere resides, gives the 
path of radiation as being curved as it follows the surface of the sphere. The gravitational effect of the 
stress-energy density within the surface of the sphere does not account for this deflection, because the 
gravitational effect acts within the confines of the surface, which is orthogonal to the deflection of the 
radiation in D+1 dimensions. A cosmological pressure term Λ(a) that is “constant” within the surface is 
the additional term required to account for the global effects of radiation pressure on the surface of SD. 
 This outward radiation pressure of metric-wave radiation within an SD surface will be demonstrated 
for the topological monopoles of the previous section, which have an S2 surface of the compactified S7 
particle dimensions and encompass a real hole in 3+1 dimensional space-time. Consider metric-waves 
in the surface of the compactified sphere, where the radius r of the sphere S2 gives a long-wavelength 
cut-off and the diameter 2χ of the compactified S7 gives a short-wavelength cut-off. This combination 
means that if the radius decreases, some of the metric-waves in the S2 surface will be excluded from the 
surface into the exterior volume of space. From the perspective of 3 spatial dimensions this radiation 
would appear to come from the volume of the sphere, where the change in energy would be given by 
 
  dE = TdS  –  PdV                         (8) 
 
Continuing with the 3-dimensional perspective of the radiation, if the energy density ρ=E/V is used as 
the value of the rate of energy change in sphere, then 
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Using the 3-dimensional equation of state ρ=E/V=3P for radiation and the Maxwell relation 
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where C is some constant. As this is the characteristic relation for the energy density of radiation 
emitted from a black body at temperature T, it implies that the shrinking S2 would appear to be a black 
body from the perspective of the exterior 3D space. The 2-dimensional perspective of the metric-wave 
radiation within the S2 surface is that of radiation in 2 spatial dimensions, for which the equation of 
state ρ=2p gives energy conservation in the sphere S2 as being pV=const. So the outward radiation 
pressure gradient for the shrinking S2 will be dp/dr∝1/r4, which equates to the radiation pressure P in 
the 3-dimensional perspective, P=dp/dr. This then gives the apparent temperature T of the sphere S2 in 
3-dimensions as being inversely proportional to radius, as for a black hole. 
 This derivation of T∝1/r involves equating the perspective in 2 spatial dimensions within the S2 
surface with the exterior perspective in 3 spatial dimensions, where the 3-D radiation pressure p3=P is 
distinct from the 2-D radiation pressure p2=p. The thermodynamic equation (8) implies that the entropy 
SD and temperature TD should similarly be labelled with the number of spatial dimensions D in which 
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they are defined. The entropy of equations (8) and (9) is S3, and the black body temperature is T3∝1/r, 
whereas the S2 energy conservation relation p2V=const. is for the condition of 2-D adiabatic changes 
dS2=0 in the sphere. Equating the 3-D radiation pressure with the 2-D radiation pressure gradient is 
consequently based upon the adiabatic condition ∂S2/∂r=0 for the sphere. It has just been shown that the 
shrinking S2 emits radiation, and so the total amount of radiation energy E in the sphere is proportional 
to the radius r, but the adiabatic condition ∂S2/∂r=0 implies that the surface entropy S2 doesn't change 
with energy E, ∂S2/∂Ε=0. As the thermodynamic temperature TD in D spatial dimensions is defined by 
 

  
D

D

TE
S 1

=
∂
∂

 

 
this implies that the 2-D temperature T2 of radiation within S2 is infinite for all values of the radius r. 
This is in turn implies that the surface entropy density of S2 has reached its maximum value, and so it is 
simply proportional to the area A of the sphere, S2=const.A, as for a black hole. For a short-wavelength 
cut-off of 2χ, the maximum number of wave modes per dimension will be proportional to 1/2χ, where 
for r>>χ the number of configurations given by the multinomial coefficient will increase exponentially, 
and so the maximum density of states per dimension g1 will be given by g1∝exp(1/2χ). As the 
configurational entropy is given by ln(g1), this maximum density of configurations per dimension gives 
the entropy S2 for the radiation in the sphere as being 
 

  ( )
AkS B

22 2χ
=                         (10) 

 
This maximum entropy bound would be expected to be displayed by the sphere S2 for r>>χ because it 
is at the upper limiting temperature of T2=∞. It can be noted that simply setting the compactification 
scale χ to the Planck length lp=√(ħG/c3) in (10) gives the entropy expression for a black hole derived by 
considering Hawking radiation [29] 
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The significant difference is that (10) was derived without reference to quantum theory, but on the basis 
of metric-wave radiation within a sphere SD exerting an outward pressure. From the perspective within 
S2, the thermodynamic equation (8) gives the outward heat flow from the surface of the sphere 
 
  dE2 + P2dV2 = T2dS2 = dq 
 
For a closed SD cosmology in which there is no space exterior into which radiation can be excluded, the 
corresponding thermodynamic equation will be 
 
  dED + PDdVD = (Λp/κ)VDdPD 
 
The significance of this for STUFT is that after the transition to the torus T3+7=S3×S7 there will be an 
outward radiation pressure P=dp7/dr from S7 and an outward pressure p=dp3/dr from S3. In the torus 
T3+7 the two spaces are “exterior” spaces to each other, and so if P>p radiation will be driven out of the 
particle dimensions S7 into the spatial S3. This situation will be realised for the scenario of the initial 
transition occurring during the contraction of S10, which would be expected to initially continue into the 
S3×S7 phase. The radiation pressure pD in an SD cosmology without a cosmological term Λ(a) scales as 
pD(a)∝1/aD+1 for radial scale factor a(t), whereas with a Λ(a) term the scaling can be denoted as 
pD(a)∝1/aD+ε, where 0<ε<1. The radiation pressure gradients will then be (for some 0<δ<1) 
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and so the radiation pressure from S7 to S3 will increase faster than in the reverse direction. This 
pressure difference is free to drive metric-wave radiation from the S7 particle dimensions of the torus 
and into the outer S3 spatial cosmology. The earlier conclusions then imply that the radiative resistance 
to further contraction of S7 would be reduced, and the radiation pushed into the spatial S3 would 
increase the outward radiative pressure term against the S3 surface and resist further contraction. As the 
scale factor χ(t) continued to decrease, more radiation would be pushed from S7 into S3, where the 
field-equations (3) for a cosmological term of the form Λ(a)=Λpp(a) imply that this will not only halt 
further contraction of S3, but reverse it into an expansion. As the scale factor a(t) increases and that of 
χ(t) decreases, the quantity of radiation transferring from S7 to S3 will decrease until it is insignificant 
in comparison to the radiation already within S3, and the S3 cosmology exits this inflationary epoch.  
 The thermodynamic analysis given for S2 shows that this conclusion essentially follows from the 
physicality assumption for the “fabric of space”, where the surface of space acts like any other closed 
physical surface with respect to outward pressures. This leads to the conclusion that the cosmological 
“constant” is a cosmological radiation pressure term Λ(a)=Λpp(a), where the currently low radiation 
pressure of the cosmic microwave background at T3=2.725K [30] would give a low current value for  
Λ(a). If the spatial S3 is assumed to be approximately described by the Friedman-Robertson-Walker 
metric, where the dynamics are dominated by the relativistic content of the universe for the majority of 
its history, then the small a(t) result of a2 ∝ t could be assumed to be a rough approximation up to the 
current age of the universe tU. Assuming that the radiation scaling is approximately given by p(a) ∝ a–4 
leads to  the approximation Λ(a) ∝ a–4 ∝ t–2, where Λ∝ tU

–2 in Planck units approximately gives the low 
current value for the cosmological term of Λ=1.7×10–121 [31-33]. This would seem to provide 
additional confirmation that the cosmological term is a cosmological pressure term, where it should be 
noted that this line of reasoning is for a closed SD cosmology. 
 As this compactification-inflation see-saw is driven by the relative radiation pressures, the extent of 
the increase in the spatial scale factor a(t) due to the see-saw alone will be given by a constant radiation 
pressure condition for metric-wave radiation within the torus T3+7. For the generic scaling form of the  
radiation pressure within SD with a cosmological term Λ(a), the constant pressure condition will be of 
the form aε+1χδ+1=const. where the values 0<ε<1 and 0<δ<1 depend upon the exact form of the full 
metric and the constants κ, Λp. The absolute physical scale of the radius a in any SD cosmology is 
undefined, but the scale of a can be meaningfully defined relative to χ such that a/χ is a physically 
defined quantity. Given that the two scales would initially be given by a=2χ for a simple transition of a 
sphere to a torus, the estimated increase in this measurable quantity will be given by: 
 

   
)3()10(2 εδεχ

χ
+++−=

a
                     (11) 

 
Assuming that the scale of χ is now given by the Planck length lp the constant area condition of ε=0, 
δ=0 gives an inflationary factor of a/χ = 2(lp)–10/3 = 1.87×10116, whereas the constant volume condition 
of ε=0, δ=1 gives an inflationary factor of a/χ = 2(lp)–11/3 = 7.41×10127. It should be noted that in all 
cases lp

–1 of the increase will be due to the unit χ being used to measure physical distances decreasing.  

4. Kaluza-Klein Dimensional Reduction 
The compactification of the previous section means that the scale χ of the particle dimensions will not 
be fixed in an absolute sense. If the torus T3+7=S3×S7 could be viewed in the 11 spatial dimensions in 
which it notionally resides, then the scale factor χ(t) of the compactified dimensions would decrease as 
the spatial scale factor a(t) increased. The scale χ(t) would only be stationary at the moment when the 
S3 spatial cosmology reached its maximum radius, and χ(t) reached its minimum. After this, the scale 
factor a(t) of S3 would decrease due to the gravitational attraction of the content of the universe, and 
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this decrease in S3 would start to increase the radiation pressure. Radiation in the torus S3×S7 is free to 
transfer between the S3 and S7 depending upon the relative radiation pressures, and so the increasing 
radiation pressure of a contracting S3 is free to transfer to S7, such that the pressure forces the S7 
particle dimensions to reflate and the see-saw runs in reverse. In this way, the scale χ will be forced to 
remain non-zero at all times, which is the physical condition required for a Kaluza-Klein theory. 
 All physical scales in the metric-field theory are relative to χ because it is also the radius of the 
spatial S2 wrapped around the compactified S7 in the monopoles. In normal electrodynamics, changing 
the radius r of a sphere bearing charge q on its surface would not change the electric far-field. So if two 
such electrically charges objects formed a stable configuration where they were separated by some 
distance d, such as in some physical material, the distance d could be used to measure the change in the 
radius r. This will not be possible for charged topological monopoles of radius χ, as a change in χ will 
also change the electric far-fields in the Kaluza-Klein theory, because the gauge fields are in terms of 
the compactified particle dimensions with radius χ. So when the scale χ changes, all physical means of 
measuring length scales will change with it, such that χ remains immeasurable. This only leaves the 
arbitrary definition of a length scale, and this is the form of the meter in the S.I. unit system, which will 
be given by 1m=Mχ in this theory, where the value chosen for M was fundamentally arbitrary.  
 Although the scale χ will be continually changing in an absolute sense, as all physical scales are 
defined relative to χ, the physical scale χ will be constant in terms of physical measurement. So the pre-
condition of a Kaluza-Klein theory that there-exist compactified dimensions of some fixed size is met 
in physically measurable terms. The dimensional reduction procedures for Kaluza-Klein theories can 
now be applied to the torus T3+7=S3×S7, where those of this section come from the Kaluza-Klein review 
[4]. The space-time coordinates of the space S3 will be denoted xµ and those of the compactified S7 
denoted ym. The non-Abelian gauge fields of the theory are given by adopting the anastz for the metric: 
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where 
 
  )()( xAyB an

a
n

µµ ξ=  
 
and gµν is the metric of space-time and Φmn is the metric of the S7 particle dimensions. Transformations 
of the ym coordinates that have an x-dependence of the form 
 
  ym → ym + ξa

m(y) εa(x) 
 
induce the usual non-Abelian transformation for a gauge field 
 
  

cb
abc

aaa AxCxAA µµµµ εε )()( +∂+→                   
 
The structure constants Cabc can be related to the structure constants fabc of a non-Abelian group 
through the introduction of a gauge coupling constant g 
 
  Cabc =  g fabc  and   ta = gTa   so that  [Ta, Tb] = ifabcTc 
 
The action for Einstein gravity in 10+1 dimensions in given by 
 

  RgxdS 2111 det
2
1

∫−=
κ                    (13) 
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where the cosmological term and stress-energy tensor have been left out for simplicity. Substituting the 
ansatz (12) into this action and integrating over the y variables gives the effective 3+1 dimensional 
action for general relativity and non-Abelian gauge fields of the standard form 
 

  µν
µνµνµνπ a
a FFgxdRgxd

G
S

214214 det
4
1det

16
1

∫∫ −−=                 (14) 

 
where the standard normalisation of the gauge fields in Kaluza-Klein theories has been used [4].  
 The group quotient SU(4)/SU(3) gives the differential manifold S7 of the compactified dimensions, 
and so the symmetry group in this action is SU(4), with SU(3) co-sets. This symmetry is broken by the 
non-trivial vacuum winding of homotopy group π7(S3) = π4(S3) = Z2, where the parametrisation of the 
sphere S4, x4 = xξ cosξ, x3 = xξ sinξ, gives the S3 group space of SU(2) which is then mapped to the 
spatial sphere S3. In terms of the gauge fields of (14), this mapping corresponds to an instanton-like 
configuration [34] for which the gauge field is pure gauge, Aµ=U–1∂µU for U∈SU(2) 
 
  σx ⋅= ˆiU                         (15) 
 
where the spatial variables x in the surface S3 have been normalised to unit vectors and there is no 
explicit dependence upon a 4th Euclideanised time variable. However, this configuration has an implicit 
time dependence where it is pure gauge at all times in the S3×S7 phase, but doesn't exist in the S10 phase 
before and after the S3×S7 phase of the current universe. This pure gauge configuration has no field 
strength Fµν, but breaks the symmetry of the gauge fields in (14) to (Spin(3)⊗SU(2)⊗U(1))/Z3 as in 
section 2. This gives the Lagrangian for the gauge fields with this gauge field background as being 
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where Gµν is the SO(3) colour field strength, Wµν is the SU(2) isospin gauge fields and Bµν is the U(1) 
hypercharge gauge field. 
 The action for the scalar sector of the dimensionally reduced theory is derived from the ansatz 
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which differs from (12) by including x dependence in the metric Φmn. Substituting this into (13) gives 
the action [4,35] 
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It is only the electroweak S4 base-space of the compactified S7 that possesses the spatial x dependence 
through the non-trivial vacuum winding, and so the indices of the metric Φmn(x, y) in (18) will only run 
over 1-4. Furthermore, the parametrisation x4 = xξ cosξ, x3 = xξ sinξ of S4 gives S3, and so the non-zero 
elements of the metric for the vacuum map S4 to S3 can be denoted as the scalar terms 
 
  111 Φ=φ , 222 Φ=φ , 333 Φ=φ , 43344 22 Φ=Φ=φ            (19) 
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Substituting this form for the metric into (18) gives a quadratic term for m=1-4 
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and a quartic term 
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Combining the scalar terms into the representation of SU(2)⊗U(1) 
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allows the quadratic term in the action to be rewritten as the local Lagrangian term 
 
  LS = (DµΦ)†(DµΦ)                     (22) 
 
for the closed S3 space containing no net topological charge. For the background vacuum configuration 
with (SU(2), U(1)) eigenvalues (–½,1) the form of the scalar field derivative will be 
 
  ( )ΦBgWgΦD iaai

µµµµ σ '22 ++∂=  
 
The definition of the eigenvalues for the unbroken U(1) charge symmetry given in (6) and that of the 
Weinberg angle in (4) gives the basis for the field definitions of the Standard Model 
 
  µµµ θθ BWA WW cossin 3 +=    µµµ θθ BWZ WW sincos 3 −=          (23) 
 
and the isospin g and hypercharge g' coupling constants in terms of the electric coupling constant e 
 
  egg WW == θθ cos'sin                     (24) 
 
In terms of the scalar field Φ denoting the 4 non-zero terms of the metric Φmn, the non-trivial winding 
of the electroweak vacuum corresponds to a spatial variation in Φ such that the bottom term of the 
SU(2) doublet always points in the same direction in going around the spatial S3. This gives the local 
form φ1=φ2=0 and φ3=φ4=φ at all spatial locations x in S3 at all times in the S3×S7 phase. Substituting 
φ=η into the local Lagrangian term (22) gives mass terms for the W and Z gauge fields 
 

  2
2

2

2
η⎟

⎠
⎞

⎜
⎝
⎛=

gmW       2
2

2

cos2
η

θ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

W
Z

gm            (25) 

 
The spatial variation in Φ going around S3 is accompanied by the pure gauge variation arising from 
(15), which in the local Lagrangian term (22) for φ3=φ4=φ will give Dµφ = ½φ and a mass term in the 
perturbative expansion φ=η+δφ  
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for which the scalar field mass is half the electroweak scale η. This gives an explicit demonstration that 
the dimensionally reduced theory gives the mass terms for the vector and scalar fields as claimed  in 
[10]. In addition to the quadratic Lagrangian term (22), the quartic term (20) also gives a term in the 
local Lagrangian with φ1=φ2=0 and φ3=φ4=φ and the pure gauge configuration from (15) 
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This is the form of the quartic term of the Higgs potential in the Standard Model, with scalar coupling 
constant λ=1/8, as claimed would be the case in [10]. 

5. Compactified Black Holes 
In the dimensionally reduced theory, the topological monopoles of section 2 will be rotating objects 
bearing electric or magnetic charges. The surface topology of the monopoles is given by S2×S7, where 
the spatial configuration is unwound within the compactified surface, such that the interior of the 
monopole is devoid of space. Such monopole “solitons” with no spatial singularity are feature of some 
Kaluza-Klein theories [18,19], but they do not always reduce to the black holes of General Relativity. 
In STUFT, the condition that the S2 surface encloses a hole in space demands the existence of a spatial 
surface for the space-time metric of the topological monopoles in the dimensionally reduced theory. For 
the neutrino-like monopoles of Table 1 with no electric charge and a topological spin charge, this 
spatial surface condition in the dimensionally reduced theory can only be met by a black hole with a 
physical surface at the event horizon. In the General Relativity portion of the dimensionally reduced 
theory, this gives the condition that the Kerr metric for this neutral compactified black hole monopole 
possesses a real value for the radius of the event horizon. So consider the Kerr metric for a rotating 
black hole with mass m and angular momentum j in natural units G=1, c=1 
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where 
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ja ≡     22 2 amrr +−≡∆    θ2222 cosarR +≡  

 
The horizon for the rotating black hole occurs at grr= ∞, i.e. ∆= 0, which in physical units is given by: 
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The condition that the monopole has no singularity and an S2 surface requires the event horizon of the 
black hole to have a real-valued radius, which will only be true for angular momentum given by 
 

  c
Gmj

2

≤  

 
A topological monopole with radius given by the compactification scale χ could be expected to satisfy 
this bound, for which the angular momentum is 
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χχ G
cj =                         (28) 

 
and the event horizon radius is   
 

  2c
Gmχχ =                         (29) 

 
The compactification scale χ is the radius of the S7 particle dimensions and so is the smallest physical 
scale in the space, which implies that this jχ is the smallest value for angular momentum in the space.  
 To demonstrate the effect of this limit, consider a test particle of mass m travelling along the surface 
of a compactified tube of radius χ with linear momentum pz = mvz parallel to the compactified tube, and 
angular momentum jχ = mχvφ around the tube. As the mass m is unspecified, it will be replaced by the 
angular momentum jχ, and the angular velocity vφ = χω then used to eliminate χ 
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χ χ
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Considering the limit of vz = vφ = c for a circular wave mode around the compactified tube gives 
 
  ωχjcpE z ==                       (30) 
 
From this we have the obvious identification ħ = jχ, with χ being the Planck length lp and mχ being the 
Planck mass mp 
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This identification ħ = jχ would appear to give the rotating black hole a rotation group eigenvalue of 1, 
but this would not be the measured angular momentum because a rotating black hole causes an angular 
rotation of a reference frame in the vicinity of the black hole given by (in dimensionless units) 
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At the surface of the event horizon, this frame-dragging is given by 
 
  )2()( χχω c=    or  v = ωχ = ½ c 
 
Whereas the angular momentum bound (28) corresponds to jχ=mχχc, this frame-dragging will give the 
measured angular momentum of the horizon as j=½mχχc. The moment of inertia for a mass shell with 
mass m and radius r is Im=½mr, giving the angular momentum for rotational velocity v of j=½mrv. So 
the measured angular momentum j=½mχχc of the event horizon would appear to be due to a mass shell 
m of radius χ rotating at the maximum velocity of c, giving a measured rotation group eigenvalue of ½. 
 This gives Planck’s constant as being geometrical in origin, due to the physical compactification 
scale χ inside which the Poincaré group of relativity does not apply. The enclosing surfaces of such 
spatial regions must be describable in terms of representations of the rotation group with eigenvalues of 
1 or ½, and where the physical scale of the angular momentum is given by ħ. So for any representation 
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Ψ of the rotation group the action of the angular momentum operator is given by 
 
  JzΨ = nħΨ   or   JzΨ = ½ nħΨ 
 
and this adds the scale ħ to the Lie Algebra of the rotation group 
 
  [Ji, Jj] = iħ ε ijkJk                        (32) 
 
This scale propagates throughout the Lie Algebra of the Poincaré group, and adds ħ to the commutator 
relations of the Hamiltonian formulation of classical physics through the infinitesimal generators 
 
  µννµνµ δhh iixPx =∂= ],[],[                    (33) 
 
As the Poincaré invariants are mass and spin, the physical scale factor is given by ħ, and the physical 
length scale of χ only appears in its invariant form χ2, as in the definition of ħ given in (31). 
 The scale ħ gives the physical scale factor between the compactified particle dimensions of radius 
χ and the unit sphere S3 of the rotation group applying to the S2 surface of the topological monopoles 
with unbroken U(1) charge symmetry. The physical scale of the circle S1 giving the underlying group 
space of the unbroken U(1) symmetry group is also given by the compactification scale χ, where the 
scale factor q for U(1) is related to ħ of the SU(2) rotation group by the area ratio between S1 and S3 

 

  ππ
π h

hh =
=
=

== 32
3

1

)1(2
)12

r
r

A
Aq (

 

 
Adding in the factor of c for an electric charge e with a non-zero gauge field A0 term, the physical scale 
of the Dirac quantisation condition is given by 
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and the unit circle S1 of the U(1) group is given by group elements of the form 
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where the physical scale of the electric charge e is given by 
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With the value of the Weinberg angle given by (4) the values of the isopin and hypercharge coupling 
constants g and g' given by (24) will be 
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which compare with the Standard Model values of 0.652 and 0.357 respectively [36]. The SO(3) colour 
coupling constant gc has an S3 group space, and so has an area ratio factor of 1 
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The scalar field terms of the dimensionally reduced theory in section 4 give expressions for the masses 
of the W and Z fields (25), which can now be evaluated using the closed formulae for the Weinberg 
angle and the value η for the electroweak vacuum [10] 
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These are not particle masses, but are instead just mass terms for classical physics waves, i.e. the W and 
Z waves of the dimensionally reduced theory take the form of evanescent waves. These mass terms for 
the W and Z fields will limit their range in the classical field theory, such that they will not give the 
classical confinement of charges discussed in section 2. This is in contrast to the massless colour fields 
with Spin(3) symmetry, which by the topological arguments of section 2 will display classical field 
theory configurations of coloured monopoles with a colour flux tube between them. 

6. Classical Monopole Theory 
The derivations of the previous section give a geometric origin for Planck's constant ħ in terms of being 
the physical scale factor for all the topological charges: spin, electric charge, isospin and colour. As the 
topological spin charge, Planck's constant enters into the Lie Algebra of the Poincaré group and then 
the Hamiltonian formulation of mechanics (33). Despite this being a feature of quantum theory, this is 
still strictly a classical physics theory.  
 The spin invariant ħ also applies to the gauge fields of the dimensionally reduced metric, where it is 
included in the wave uncertainty relations ∆f∆t≥½ and ∆λ∆x≥½ of classical physics to give uncertainty 
relations ∆E∆t≥ħ/2 and ∆p∆x≥ħ/2 for wave radiation in the dimensionally reduced theory. The radius χ 
of the particle dimensions defines the physical scale of the natural unit system (mp, lp, tp) in (31), where 
mass, spin ħ and the speed of light c are the invariants of the dimensionally reduced space. Since the 
intrinsic error of measurement for a measuring scale is ±½ the units used, the error of distance and time 
measurement will be ±½lp and ±½tp, which limits the accuracy of measurement for the canonical 
variables of Hamiltonian mechanics 
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by (31). As the topological spin charge ħ is an invariant of the space, changing the unit system will not 
change this intrinsic measurement limit of ħ/2 for the product of the measurement errors. So the 
Heisenberg uncertainty relations will apply to measurements of both wave radiation and the topological 
defects, because of the compactification of the particle dimensions [10]. 
 Many of the major features of the Standard Model have now been derived at the classical physics 
level, but notably not the following: 
 
1) The topological monopoles are not deduced to display wave motion 
2) There are no continuous matter fields, as the topological monopoles are discrete objects 
3) There is no quantisation of the metric field, or gauge fields, to give particles 
 
It is these features which mark the transition to quantum field theory, where [10] showed that the form 
of quantum theory can be derived in terms of a change in descriptive framework due to difficulties in 
the classical physics theory. The physical cause for these difficulties in the classical monopole theory is 
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that the black hole monopole of the Planck mass in section 5 has an ergo-region which traps virtual-
radiation capable of totally cancelling the Planck mass. The ergo-region of a black hole is defined by 
the boundary where gtt = 0, which for a rotating black hole is outside of the event horizon with a radius 
given in dimensionless units by 
 
  )cos( 2222 θammr −+=+  
 
which for the limit rh = χ of the compactified black hole monopole becomes 
 
  )sin1( θχ +=+r                       (39) 
 
Inside the ergo-region χ < r < r+(θ) the sign of gtt is reversed, and so consequently any radiation within 
the ergo-region will have the mass invariant m2< 0 of virtual-radiation. Propagating radiation is trapped 
in orbit by the sign reversal of the metric term gtt, which can conceptually be viewed in terms of total 
internal reflection at the ergo-region boundary. Such a view gives a physical basis for the classical 
physics wave equations possessing a non-propagating radiation tail beyond the ergo-region boundary, 
as for evanescent waves with total internal reflection in optics.  
 In the dimensionally reduced theory, the energy of radiation is E=ħω, which for ω being the inverse 
of the Planck time tp=lp/c gives E = mpc2 by (31), implying that radiation trapped within the ergo-region 
could cancel the Planck mass of the bare topological monopole by the Penrose process [37], leaving the 
rest mass of the monopole largely determined by the charge fields [10]. In which case, the coloured 
monopoles would be expected to be more massive than the non-coloured monopoles, mc=1>mc=0, and 
the masses greater for monopoles with greater electric charge, mq=2/3>mq=1/3 and mq=1>mq=0. It should be 
noted that although the neutrino-like monopoles have no electric far-field because the W and Z fields 
cancel, as mZ >mW there is a small region where the fields haven't cancelled yet, and so by this simple 
argument the neutrinos would be expected to have a non-zero mass mν >0. A similar argument can be 
made for increasing mass to be expected for increasing SU(3) co-set, and the 12 fundamental fermions 
fit this mass hierarchy except for the down quark mass being greater than the up quark mass. 
 Whereas the macroscopic black holes of section 3 decrease in mass through the emission of 
radiation, at the limit of the compactification radius χ the topological monopole has a spin charge of 
ħ/2 which cannot be radiated away. The mass of this frustrated black hole is instead decreased through 
a Penrose process [37] of virtual radiation being trapped in the ergo-region, where the task in hand is to 
calculate what the Planck mass of the bare black hole is reduced to when the surface bears the charges 
of Table 1. The issue with this calculation is revealed by considering a monopole and anti-monopole 
collision, where the topological charges of the pair cancel and the resulting black hole configuration is 
free to radiate all its mass away. Applying time reversal to this process gives radiation of sufficient 
energy creating a monopole and anti-monopole pair, which was the second physicality condition given 
at the beginning. For the black hole monopole, the energy of virtual radiation in the ergo-region is more 
than sufficient for this process, being of the Planck energy scale E=mpc2. 
 Now consider calculating the energy of the field configuration around this black hole monopole 
using the Hamiltonian given by the dimensionally reduced Lagrangian of section 4. As the gauge fields 
and scalar fields propagate as waves in the classical theory, a series expansion approach can be adopted 
for the fields of the propagating radiation trapped in the ergo-region, the non-propagating radiation tail, 
and the charge field for the charges residing on the surface of the monopole black hole. However, the 
energy of the wave terms in this series expansion can be large enough to create a monopole/anti-
monopole pair for any of the 12 monopoles of Table 1. This process must also be included in the series 
expansion because a monopole/anti-monopole pair has a dipole moment which will effect the charge 
field of the bare monopole. So the series expansion must also include this vacuum polarisation effect of 
virtual-radiation creating monopole/anti-monopole pairs, where these monopoles also possess the m2< 
0 mass invariant of the ergo-region, and so constitute virtual-matter.  
 The series expansion for the dimensionally reduced Hamiltonian will be denoted as being of the 
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form H(n, A, Φ), where n denotes the  monopoles of each of the 12 types, A denotes the gauge fields 
and Φ denotes the scalar fields. The field energy of the monopole in the dimensionally reduced theory 
will be given by integrating the Hamiltonian over the spatial volume surrounding the monopole, and so 
the theory H(n, A, Φ) will have no explicit dependence on space-time coordinates. Each monopole 
term ni(x, t) denotes the space-time coordinates of a monopole of type i, where the motion of the 
monopole is given by the geodesic transport of the covariant derivative Dµ in the dimensionally 
reduced theory in section 4. In generic terms, the form of the Hamiltonian of the dimensionally reduced 
theory will be 
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The terms a, b, c come from the gauge field strengths of the gauge field Lagrangian (16), the terms d, e, 
f come from the quadratic scalar field Lagrangian term (22), and the terms s, t, u, v come from the 
quartic scalar field Lagrangian term (20). The terms α, β, γ would come from linear covariant derivative 
terms for the monopoles, and the terms σ and τ from quadratic covariant derivative terms. All that will 
be required is that at least one of the terms β, γ, σ and τ be present in the Hamiltonian, because these 
terms change the numbers of discrete monopoles through the creation of monopole/anti-monopole pairs 
from wave radiation, and their annihilation to radiation.  
 The wave expansion for the gauge fields A and scalar fields Φ will be of the form 
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where the integral over ω is required because ω≠|k| for virtual-radiation in the ergo-region of the Kerr 
metric. The ranges of the ω and k integrals are linked by the dispersion relation for virtual-radiation in 
the ergo-region, where E=ħω ≤mpc2 by (30), (31) and the bare monopole mass. When the Hamiltonian 
contains at least one of the terms β, γ, σ and τ, waves in the expansion (41) will create a monopole/anti-
monopole pair for E≥2mi where mi is the reduced mass of the type i monopole with bare mass mp. This 
gives recursion in (40), where the calculation of the reduced mass mi of the type i monopole from the 
bare mass mp includes the term being calculated. So the wave expansions of (41) will give a recursive 
series expansion in terms of the monopoles/anti-monopoles created in the Hamiltonian. 
 The form of the terms in the classical physics of (40) defines 3 and 4 point reaction vertices 
between the gauge fields, the scalar fields and the discrete monopoles. However in the wave expansion 
of the terms β, γ, σ and τ, the created monopole/anti-monopole pairs must annihilate back to radiation 
because they carry conserved topological charges which cannot change the topological charge of the 
original monopole that the Hamiltonian expansion is about. This means that the terms β, γ, σ and τ will 
give closed loops over monopole/anti-monopole creation and annihilation, where the ω integral of (41) 
for the closed loop will be over the range of energies for the created pair. The same Hamiltonian 
expansion of (40) must then be recursively repeated for every monopole and anti-monopole created in 
the initial term H0 of the expansion. This gives an infinite series expansion for the recursion 
 

  )()()( 11000 10
10

nnnn
HHHdddH nE ωωωωωω

ωω ω
KK∫∑ ∫ ∫

−∞

=
=          (42) 

 
where ωΕ  is the upper limit given by the dispersion relation for virtual-radiation in the ergo-region. The 
sign reversal of gtt in the ergo-region also impacts space-time separations such that causal events 
involving the ergo-region can have space-like separations, giving a distance equivalent to the mass 
invariant m2<0 in the ergo-region. So when the integrals of (42) are switched from phase-space to real-
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space, the time integrals will be subject to a corresponding ergo-region constraint, and so be of the form 
 

  )()()( 11000 10
10

nn

t

nn

t t
tHtHtHdtdtdtH nE

KK∫∑ ∫ ∫
−∞

=
=            (43) 

 
This recursive series expansion can be expressed in terms of the Hamiltonian density by including the 
spatial integrals of (40) to give 
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Although this is of the same form as the path integral expansion in quantum field theory [38], here it is 
a recursive expansion for the mass reduction of the bare monopole mass by virtual-radiation trapped in 
the ergo-region of the compactified black hole that is a monopole. This recursive expansion for the 
terms of the theory H(n, A, Φ) will be expressed as 
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where the variable n gives the recursion depth, and the variable a runs over the combinations of 
reaction sequences possible at that recursive depth. Each term Tn

a(n, A, Φ) is of the form of a reaction 
sequence that starts with a single monopole mi that emits virtual-radiation wj, and then both mi and wj 
take part in a reaction sequence that ends with the initial monopole mi again.  
 Since (44) has the same form as the path integral expansion of quantum field theory, the same visual 
aid of Feynman diagrams [38] can be used to graphically denote the reaction sequences, where the 
terms of a Feynmann diagram are related to the terms of the Hamiltonian (44) to give an expression for 
Tn

a(n, A, Φ). The vertex terms of the Hamiltonian are given by the terms T0
a(n, A, Φ), where the 

following 4 generic monopole reactions are of primary relevance to changes in monopole numbers: 
 

1) mi + Vn → m'i + w + Vn' 
2) mi + wj + Vn → m'i + Vn' 
3) wj + Vn → m– + m+ + Vn+1' 
4) m– + m+ + Vn+1 → wj + Vn' 

 
Every monopole reaction sequence will start with the first vertex term as it denotes the emission of 
virtual-radiation, and ends with the second vertex term denoting the absorption of virtual-radiation. The 
creation and annihilation of monopole/anti-monopoles pairs is given by vertex terms 3 and 4. The term 
Vn is a running accounting term for the construction of the terms Tn

a(n, A, Φ), imposing the condition 
that the monopole reaction sequence ends with the initial monopole only, and also imposes the energy 
conditions of the integrals in the wave expansion (42). 
 The terms of T1

a(n, A, Φ) are generated from combinations of T0
a(n, A, Φ), and this pattern is 

repeated at each recursive level so that the terms Tn
a(n, A, Φ) are generated from combinations of the 

terms T0
b(n, A, Φ), …, Tn-1

c(n, A, Φ). In this process, the accounting term Vn starts at zero and records 
the numbers of monopoles produced by the reaction vertices, such that balancing reaction vertices are 
added to return the term Vn to zero when the reaction sequence ends with the initial monopole. In this 
way, each successive term Tn

a(n, A, Φ) in the series expansion is an ever larger reaction network 
involving more reaction vertices, where (45) is an infinite series. 
 Despite the complexity of the space-time integrals over the gauge fields A and scalar fields Φ, the 
difficulties of H(n, A, Φ) are with the countable numbers of monopoles n, because H(n, A, Φ) is such 
that Gödel’s proof of incompleteness [39] can be constructed solely within the scope of H(m, A, Φ), 
using only terms that denote physical monopoles, fields and reactions within the theory itself. The 
consistency required of H(n, A, Φ) by the proof is also just in terms of the monopoles, where their 
topological basis ensures that a monopole either exists or it doesn't, and so the dimensionally reduced 
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theory H(n, A, Φ) will have the required consistency over n. The incompleteness discussed in [10] 
applies to the virtual-monopole reaction network as follows: 
 

 Logical truth values are physically realised by existence in H(n, A, Φ), where a term A denoting 
a physical property is true if the property exists, and false if it doesn't. 

 Logical operations can be physically realised in H(n, A, Φ) in terms of physical terms A and B. 
 Logical implication in H(n, A, Φ) is physically realised in terms of causation, where physical 

state A causing physical state B gives a realisation of A implies B. 
 Logical induction is present in H(n, A, Φ) in terms of induction from a true statement about a 

property of one monopole ni=1 to a true statement about any number of monopoles. 
 
This gives a physical realisation of the logical operations required for H(n, A, Φ) to constitute a formal 
deductive system in its own terms, i.e. without the external application of mathematical operations.  
 

 Successor function is physically realised by monopole creation, s(ni): ni → ni + 1. 
 Predecessor function is physically realised by monopole annihilation, p(ni): ni → ni – 1. 
 Zero function is physically realised by annihilation of all anti-monopoles created about a 

monopole and vice-versa, z(ni): ni → 0. 
 Projection functions are given by the identification of monopole types, and this identification 

can be extended to any combination of monopole reactions, Pi(n1, …, nm) → ni ∀i. 
 
This gives a physical realisation within H(n, A, Φ) of the initial functions required for the operations of 
arithmetic and partial recursive functions over the natural-numbers to be realised in physical terms. 
 

 Addition over the number of monopoles ni of some type i is realised in the construction of the 
term Tn

a(n, A, Φ) by the accounting term Vn controlling how many times the successor function 
s(ni) is applied. 

 Multiplication over the number of monopoles ni  of some type i is realised in the construction of 
the term Tn

a(n, A, Φ) by the accounting term Vn controlling how many times a term Tm
b(n, A, 

Φ), with m<n, containing addition over ni is added to the term Tn
a(n, A, Φ). 

 Substitution is physically realised in terms of creating a reaction network term Tn
a(n, A, Φ) 

from pre-existing reaction network terms T0
b(n, A, Φ), …, Tn-1

c(n, A, Φ). 
 Recursion is physically realised in terms of creating a term Tn

a(n, A, Φ) denoting a new reaction 
network from pre-existing reaction networks, which can subsequently be included some number 
m of times in further reaction networks. In this way a new variable m is added to the theory. 

 A recursive number theoretic function f(n0, …, nm) is physically realised in terms of the 
numbers of monopoles and monopole reaction sub-networks (denoted n0, …, nm) giving some 
number of monopoles or monopole sub-networks, i.e. f(n0, …, nm) → n 

 The infinite recursion that gives the infinite series expansion of (45) means that the function 
creation process can be repeated indefinitely, and so every recursive number-theoretic function 
is realised within the scope of H(n, A, Φ) in physical terms. 

 
This gives a physical realisation of arithmetic over the natural-numbers of n and all number theoretical 
functions within H(n, A, Φ), such that Gödel’s incompleteness proof can be constructed solely within 
the scope of H(n, A, Φ) in physically-real terms denoting monopole numbers and reactions. 
 

 Gödel number g can be calculated for any term within H(n, A, Φ) because all number-theoretic 
functions are defined within H(n, A, Φ). 

 Diagonal function D can be defined for the same reason. 
 Gödel and Rosser sentences can be expressed within the scope of H(n, A, Φ) using only terms 

contained within H(n, A, Φ). 
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So the theory H(n, A, Φ) is proven to be mathematically incomplete using only the terms denoting 
monopoles and wave radiation. As the undecidable propositions within H(n, A, Φ) are also expressed in 
such terms, they could correspond to observables. If this were the case, there would exist an observable 
property p of a monopole that could not be derived within the classical theory H(n, A, Φ). This would 
be the case for the topological monopoles of Table 1 being the particles, as particles are observed to 
display a wave property. This property is not derivable in H(n, A, Φ) as it crosses the classification 
divide between a hole and metric-waves in the “fabric of space”.  

7. Quantum Field Theory 
In this section, it will be assumed that the topological monopoles of Table 1 are the particles, and so 
possess a wave property p that cannot be derived in the classical physics theory H(n, A, Φ). This gives 
a scientific description problem as there-exists a physical property p that can neither be predicted from 
H(n, A, Φ), nor included in H(n, A, Φ) as it will result in an inconsistent theory with wave-particle 
duality. There-exists no hidden variable that can be added to H(n, A, Φ) to account for p, as the 
problem lies with incompleteness over n. So adding an extra field to A or Φ won't work as it misses the 
source of the problem, and the infinite recursion of (45) means that all possible n variables have 
already been considered in the course of the incompleteness proof. Furthermore, the wave property p 
cannot simply be attached to the terms in H(n, A, Φ) as the character of the incompleteness proof for p 
means that it is a property of the infinite virtual-monopole reaction network given by the expansion in 
H(n, A, Φ). This would make the wave property p a physical property of an infinite set that cannot be 
reduced to the monopole content of the set. 
 The replacement procedure identified in [10] to convert the incomplete theory H(n, A, Φ) into a 
scientifically complete theory HC(Ψ, A, Φ) is to replace the natural-number valued terms n(xµ) for the 
countable number of monopoles with real-number valued continuous field terms Ψ(xµ), to which the 
wave property p can be attached without causing an inconsistency or set-theoretic type conflict. This 
procedure works because Gödel’s incompleteness theorems only apply to formal systems over the 
natural-numbers, not over the real-numbers. As the incompleteness of H(n, A, Φ) individually applies 
to each of the 12 monopoles, the replacement Ψi(xµ) must be performed for all of them, where the spin 
charge ħ/2 for the monopoles means that the field term Ψi must be a relativistic spinor. The wave 
property attached to Ψi then implies that the relativistic spinor must satisfy the Dirac equation 
 
  0=Ψ−Ψ i

i
i mDiγ µ

µ
                          (46) 

 
where Dµ is the covariant derivative for the geodesic transport of the corresponding discrete monopole 
in the dimensionally reduced classical theory of section 4, and mi is the monopole mass.  
 As the topological monopoles are discrete objects, the second part of the replacement procedure 
[10] is the addition of an ancillary function M that converts the Ψi into the observed values ni for the 
countable number of particles of type i. The mathematical conditions of the incompleteness proof mean 
that M cannot be derived within H(n, A, Φ). If M were derivable in H(n, A, Φ) that would imply M was 
a partial recursive number-theoretic function that also holds over the real-numbers, but as all such 
functions can be expressed within H(n, A, Φ) the inverse M–1 would be derivable within H(n, A, Φ). 
This inverse could then be used to reverse the replacement procedure to give an apparently consistent 
and complete theory H'(n, A, Φ) over the same terms as the incomplete theory H(n, A, Φ). But such a 
modification to an incomplete theory cannot be both consistent and complete, so the assumption that M 
was derivable in H(n, A, Φ) was incorrect. The x variation of the continuous field Ψi description of 
some number of discrete objects must be integrated over to give ni, and the wave property of Ψi implies 
that M must be of the form ni = M(Ψi

†
 Ψi), so 
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The condition of local causality for the monopoles described by observables ni, and the binary character 
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of this operator provide the basis for deriving the spin statistics for the fermionic fields Ψi [38]. 
Consistency of the complete theory then requires that the same procedure be applied to the continuous 
vector gauge fields A and scalar fields Φ, where the equivalent expression of (47) for these fields 
similarly provides the basis for deriving the spin statistics for these bosonic fields [38]. It is this step 
required for consistency of HC(Ψ, A, Φ) which gives the quantised gauge particles and quantised scalar 
particles in this quantum field theory. 
 The theory HC(Ψ, A, Φ) obtained by the replacement n → Ψ retains all the topological and 
geometric features found for the classical physics H(n, A, Φ), and so all the values ħ, θW, e, g, g', gc, λ, 
mZ, mW, mH carry over to HC(Ψ, A, Φ). The Lagrangian terms for the classical physics H(n, A, Φ) found 
in section 4 carry over to give a local Lagrangian with local symmetry SO(3)⊗SU(2)⊗U(1) for the 12 
fermions of Table 1 
 
  L = LF + LG + LS + LV                     (48) 
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where the non-zero terms of the particle space metric Φmn for the electroweak vacuum are written as a 
representation of the SU(2)⊗U(1) symmetry 
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In these terms, the quartic term of the Lagrangian gives the apparent potential term 
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which for the electroweak vacuum with φ1=φ2=0 and φ3=φ4=φ is 
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The masses for the W and Z bosons arise in LS from the scalar field φ=η at all spatial locations in S3, 
whereas the Higgs boson mass arises in LS from the gauge field of the instanton-like configuration (15). 
The apparent local potential term LV is not responsible for the electroweak vacuum in STUFT, where it 
instead arises from the global topology of the particle space S7 being twisted in going around the full S3 
of the spatial universe. This global origin of the symmetry breaking makes the pursuit of unification in 
a local Lagrangian with symmetry group SU(4) and SU(3) co-sets somewhat pointless, as such a local 
theory would necessarily fail to represent the global topology of the space. 
 The chirality of the instanton-like configuration of (15) is only an issue for the spinor fields Ψi 
denoting the 12 fermions of Table 1, where it will give different covariant derivative terms in (46) for 
left and right chiralities of Ψi. This chirality of the electroweak vacuum also gives unequal 
contributions to the fermion mass terms of LF, as the pure gauge field gives a factor of ½Ψi in the 
covariant derivatives of the left-handed spinor fields. This different behaviour of the left and right 
spinor fields Ψi creates a problem in LF as the form of the mass terms mi varies with chirality and 
SU(2)⊗U(1) eigenvalues. The pure gauge field of the instanton-like configuration (15) gives the gauge 

23 



   

variation in S3 such that the scalar field Φ of the electroweak vacuum is given by φ3=φ4=φ at all spatial 
locations x in S3 at all times in the S3×S7 phase. This means that the local Lagrangian term LF can be 
given SU(2)⊗U(1) invariance by replacing the mass terms mi with 
 
   gi(Ψi

L
†

 Φ ψi
R + ψi

R
†

 Φ†
 Ψi

L)                   (49) 
 
This term is of the form of the γ term in (40) and gives the impression that the electroweak vacuum is 
directly the source of mass for the fermions, which is not the case in STUFT. The electroweak vacuum 
is the source of the topological conditions that give fermionic monopoles, but their masses are given by 
the Hamiltonian expansion of the previous section, and this is the source of the underlying problem 
with fermion masses in (48). 
 The assumption that the topological monopoles of the classical physics possess a wave property p 
that cannot be derived in the mathematically incomplete theory H(n, A, Φ), gives a description problem 
that is resolved by the replacement n → Ψ leading to the quantum field theory HC(Ψ, A, Φ), but the 
mass calculation problem of H(n, A, Φ) remains. The theory HC(Ψ, A, Φ) does not resolve this 
problem, but instead the form the Hamiltonian expansion (44) constrains the validity of the 
replacement n → Ψ. This is because the integrals of (44) are over the space-time of the Kerr metric of a 
compactified black hole, which possesses an event horizon, rotational frame-dragging and an ergo-
region, none of which can be denoted by the continuous field Ψi(xµ) in space-time. However, far from 
the compactified black hole space is flat and a monopole can be approximated as a point. In this far-
field limit r>>χ the point monopoles counted by the natural-number variable n can be replaced with Ψ, 
and the Kerr metric dropped from the Hamiltonian expansion (44) to give 
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This Hamiltonian expansion about a point particle is only valid in the far-field limit r>>χ, and so this 
gives the range of validity for the replacement n → Ψ that yields the quantum field theory HC(Ψ, A, 
Φ). This specifically means that HC(Ψ, A, Φ) is only valid in the limit that the gravitational effects of 
particles are negligible, and so the quantum field theory cannot be re-combined with General Relativity. 
The limits on the integrals arise in (47) from the ergo-region limit E ≤ mpc2 which will not be present in 
a theory in the far-field limit which omits the ergo-region. However, all the terms in HC(Ψ, A, Φ) are 
now waves subject to the Heisenberg uncertainty relation ∆E∆t≥½ħ, where setting the time variation to 
its minimum ∆t= ½tp = ½lp/c gives ∆E ≥ cħ/lp = mpc2 by (31), which for the equality bound recovers the 
ergo-region bound of the classical physics theory. So using Heisenberg's uncertainty relation in place of 
the ergo-region constraint in the Hamiltonian expansion (50) gives a consistent quantum field theory 
for the far-field limit of |x|>>χ and for energies E<<mpc2. 
 The Hamiltonian expansion (50) gives the form of the path integral expansions of quantum field 
theory [38], and the rest of the standard development of a quantum field theory proceeds in exactly the 
same way here. This includes the renormalization procedure [40] to handle the recursion that gives rise 
to (50), so as to normalise the calculation to the measured masses of particles. Cut-off regularization 
will have a physical basis in this quantum field theory, as the compactification scale χ gives a physical 
small scale cut-off, and the radial scale factor a(t) of the spatial universe gives a large scale cut-off. It 
can be noted that the term (49) is required to ensure SU(2)⊗U(1) invariance of the Lagrangian (48), so 
that the theory can be renormalized.  
 A quantum field theory with local symmetry SO(3)⊗SU(2)⊗U(1), a non-trivial vacuum with the 
eigenvalues of the electroweak vacuum, and 12 fermionic monopoles with the eigenvalues of the 
fundamental particles has been derived from Einstein gravity (1) in 10+1 dimensions. Plank's constant 
ħ was derived, the values of the coupling constants θW, e, g, g', gc and λ have all been derived with the 
values of the Standard Model, and a scalar (Higgs) boson mass predicted to be given by mH = ½η [10]. 
The reason for the derivation of this quantum field theory is the mathematical incompleteness of the 
classical physics theory H(n, A, Φ) for the calculation of the mass reduction of a monopole with bare 
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mass mp, and this limitation still remains in that the fermion masses are unpredicted by this work. In 
addition, there are classical physics interactions of monopoles that are not included by the far-field 
limit of the quantum field theory. The first is SU(3) co-set transitions where a particle changes between 
co-set family, and so the values of the Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) family transition matrices remain unpredicted, where it should be noted that 
these can only be calculated in STUFT from the classical physics of monopole interactions. The 
gravitational effects of the topological monopoles can be approximated by a Newtonian potential and a 
spin field for the rotational frame-dragging. The spin field will allow spin-flip interactions for near 
direct collisions of classical physics monopoles that are not possible under the Lagrangian (48) 
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Such interactions will have a very small collision cross-section, but because the cross-section is non-
zero, STUFT predicts that right-handed neutrinos exist [10]. 

8. Cosmology 
As a pure metric field theory, STUFT will be strictly invariant under the joint action of time reversal 
T(t) → –t and parity P(x) → –x across all 10 dimensions, i.e. P10T invariant. After the topological 
transition S10 → S3×S7 and compactification, the spatial parity operator is dimensionally reduced to P3 
and the remaining 7 parity operators become charge reversal operators C(q) → –q, such that P10T 
invariance becomes global C7P3T invariance. However, the electroweak vacuum breaks the symmetry 
of the electroweak base-space, leaving the colour and electromagnetic symmetries intact to give local 
C4P3T invariance for these charges, but local C3 and P3 violation for isospin charges. This discrepancy 
between global and local invariance arises because the global operation of C7P3T reverses the chirality 
of the electroweak vacuum (L→R) and the time development of the whole cosmology, whereas the 
local operators C3 and P3 reverse the isospin charge and chirality of a particle, but not that of the 
electroweak vacuum. Furthermore, the local time reversal operator T will change a monopole into an 
anti-monopole, but not reverse the time development of the universe, and this implies local T violation. 
As the positive energy of matter is associated with temporal translation in the positive time direction, 
and the negative energy of anti-matter with temporal translation in the negative time direction, the 
positive time bias of an expanding cosmology implies a T violation bias in favour of matter over anti-
matter [10]. This origin for local T violation implies that the extent of T violation will be correlated 
with the expansion rate da(t)/dt>0 of the S3 universe, and so will be low in the current epoch, but would 
have been higher in the inflationary epoch and its immediate aftermath when the monopoles formed. 
 This matter bias for an expanding cosmology predicts a net matter content for the STUFT universe, 
but this slight bias would be expected to be dominated by those monopoles and anti-monopoles which 
wouldn't have annihilated to radiation. The predicted non-zero mass of the neutrino-like electric 
monopoles gives a form of hot dark matter that would largely retain its primordial distribution of both 
matter and anti-matter, as neutrinos are so weakly interacting not to have annihilated. In addition, the 
magnetic duals of electric neutrinos would be expected to be of a higher mass and so possibly give a 
form of cold dark matter, where again the weakness of their interactions could be expected to have left 
a distribution of both monopoles and anti-monopoles. 
 In STUFT, monopole/anti-monopole annihilation is to a neutral black hole with a compactified 
surface that then emits its mass as radiation, which implies that the time taken for annihilation will be 
related to monopole mass. The relation between electric and magnetic charges in the Dirac quantisation 
condition, and the correlation between monopole charge and mass, implies that magnetic monopoles 
would be expected to have a much greater mass than their electromagnetic duals. This implies that 
magnetic monopoles would have frozen out before the electric monopoles in the early universe of the 
S3×S7 phase, and their annihilation time-scale is much longer than that of the electric monopoles. Under 
the conditions of high temperature and density in the early STUFT universe, there can exist a magnetic 
monopole mass above which the annihilation time-scale is such that the resulting neutral black hole 
acquires in-falling energy faster than it is emitted as radiation, and so grows. This would be the most 
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significant form of mass perturbation in the early STUFT universe. It should be noted that the 
derivation of quantum field theory in section 7 was for the far-field limit of negligible spatial curvature, 
and so the application of quantum field theory in the vicinity of black holes and the high curvature of 
the early STUFT universe might not be entirely valid. Some of these primordial black holes of 
monopole/anti-monopole origin could have persisted and continued to grow. The super-massive black 
holes at the centres of galaxies would seem to indicate a potential role for such primordial black holes 
of magnetic monopole origin in the formation of galaxies. An estimation of the magnetic monopole 
masses in STUFT would be required to determine whether it does give such primordial black holes. If 
there is a distribution of macroscopic primordial black holes resulting from magnetic monopole/anti-
monopole annihilation, they would also give a cold dark matter contribution. 
 The multi-stage pattern of sphere decomposition in STUFT would have occurred as the early 
STUFT universe expanded, and the sequence would explain the multi-stage pattern of intersection for 
the running coupling constants in the Standard Model: 
 
  S10 →CI  S3×S7 →CF S3×(S3×S4) →BS S3×(S3×(S3×S1)) →EW S3×(S3×S1) 
 
CI is the de-unification transition that starts the compactification-inflation see-saw driven by radiation 
transfer from S7 to S3 and gives the non-trivial vacuum winding of S7 around S3. The CF transition 
marks the colour-fibre separation from the particle space S7 and corresponds to the intersection point of 
the isospin coupling g and the colour coupling gc. The BS transition marks the separation of the S4 
electroweak base-space into S3 and S1, corresponding to the intersection point of the isospin coupling g 
and hypercharge coupling g'. The electroweak transition EW is then just a dynamic transition when the 
energy level drops below the electroweak energy scale η. 
 The closed universe S3 will expand up to some maximum radius and then contract back down again 
as the see-saw process of section 3 runs in reverse. As the two scales a(t) and χ(t) become comparable 
again the above sphere sequence would be reversed, ending in the initial transition being reversed with 
the restoration of the unified S10  phase. This gives the pattern of a cyclical universe, which then raises 
concerns about continuously increasing entropy with each cycle. However, these concerns are covered 
by the conclusion of section 3 that the definition of entropy is specific to the number of dimensions. So 
any closed cycle that crosses a dimensional reduction will encounter an entropy anomaly as the 
definition of entropy changes. For a black hole the entropy goes from S3 for matter falling into a black 
hole, to S2 for metric waves in the surface of the black hole, and back to S3 when the energy is emitted 
as radiation. Attempting to directly compare the entropies S3 and S2 will give an apparent entropy 
anomaly because the comparison is not like with like. When matter falls into a black hole and is re-
emitted as radiation, the radius of the black hole remains the same and so the S2 entropy is unchanged. 
Outside of the black hole the conversion of matter to radiation increases the S3 entropy as to be 
expected by the laws of thermodynamics. So there is no entropy problem with this closed cycle as long 
as the entropies in the different numbers of dimensions are not directly compared against each other. A 
similar situation arises for a cyclical universe between the S10 entropy in the S10 phase and the S3 
entropy of the S3×S7 phase. In this case, the increase in S3 entropy during the expansion and contraction 
of the universe requires the transition back to S10 to occur at a larger radius than that of the initial 
transition so as to give the same S10 entropy density in the unified S10 phase. Under these conditions 
there would be no entropy problem with a cyclical universe. 

9. Discussion 
The incompleteness proof of section 6 and the subsequent derivation of quantum field theory in section 
7 on the basis of the wave property being undecidable in the classical physics is a significant result, as 
it questions the physical justification for matter fields. With the compactification of particle dimensions 
and the spatial inflation of the universe being powered by a radiation transfer mechanism in section 3, 
the physical justification for inflaton fields is also questionable. This would then make the addition of 
symmetry breaking fields in a field theory appear somewhat arbitrary. Without a convincing physical 
basis for matter fields being fundamental and arbitrary fields being of questionable physicality, this 
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would have the effect of leaving geometric field theories in classical physics as the primary remaining 
route to the unification of physics. The assumptions of closure and physicality for the “fabric of space” 
of a metric field theory open up a different path to symmetry breaking and particles, where the 
symmetry breaking in the space is by a topological transition that allows for a non-trivial winding of 
the space, such that monopoles arise as stable topological defects.  
 Although in general there will exist a range of metric-field theories displaying these characteristics, 
STUFT appears to possess an underlying mathematical structure that identifies it as being unique. This 
is because the closure condition in 10+1 dimensions leads to STUFT being characterised by the closed 
spaces S0, S1, S3 and S7 in the 4 normed division algebras. The closure of space in Einstein gravity 
means that the spatial expansion will eventually be reversed, and the transition S10 → S3×S7 reversed 
S3×S7 → S10  to restore the initial space, which necessarily gives a cosmology that is cyclical in time 
(S1). The transition then leads to topological monopoles and anti-monopoles which are characterised by 
S0 = {–1, 1}, and this gives a realisation of all 4 spheres. Furthermore, the wave property assumed for 
the topological monopoles in section 7 would then mean that they in representations of all 4 spheres: 
 

 S0: monopoles and anti-monopoles 
 S1: cyclical waves 
 S3: representations of the rotation group with group manifold S3, i.e. spin 
 S7: representations of the group quotient SU(4)/SU(3) ≅  S7, i.e. Table 1 

 
As the wave property of a particle cannot be derived in a classical physics theory because it crosses the 
classification divide between particle and wave, this simultaneous representation of the spheres of the 4 
normed division algebras is unexpected in classical mechanics. As there are only 4 normed division 
algebras, the 4 spheres S0, S1, S3 and S7 are uniquely defined and only realised for unification of spatial 
and particle dimensions in a geometric theory with the topology of STUFT. These characteristics seem 
to uniquely identify STUFT as being the one and only possible geometric theory that yields a quantum 
field theory for 12 fermionic monopoles with the eigenvalues of the fundamental particles [10].  
 The obvious difficulty with the quantum field theory of section 7 is that the local SO(3) colour 
group differs from the SU(3) colour group of the Standard Model, but the coloured monopoles were 
shown in section 2 to nonetheless possess the same 1/3 electric charges as the quarks. It can also be 
noted that the vacuum eigenvalues (0,–½,1) gives the SO(3) colour angle θQCD=0. The SO(3) colour 
group is related to the cosmological difficulty of the closed spatial universe of STUFT, whereas the 
current evidence appears to point to an open universe. The problem for STUFT is that the closure of the 
universe is the direct reason for the chiral vacuum with the characteristics of the electroweak vacuum, 
which then gives the topological conditions for the 12 topological monopoles of Table 1. This means 
that in STUFT, the existence of fermionic matter is directly linked to the universe being closed S3. The 
closure of the universe also underlies the compactification-inflation see-saw of section 3, which is 
further dependent upon the physicality assumption of the “fabric of space”. This physicality assumption 
also gives the basis for identifying the group spaces of the symmetry groups Spin(3), SU(2) and U(1) 
with the physical particle spaces S3, S3 and S1, where the closed formulae for the coupling constants 
and boson masses were derived on the basis of this identification. This directly links the S3 fibre of the 
S7 particle space with the group space of the colour group in STUFT, and so the colour group can only 
be Spin(3) unless the physicality assumption is dropped. However, if the physical assumption is 
dropped then all the other results of STUFT are lost.  
 So perhaps the real issue with STUFT is its unreasonable success in deriving closed formulae for 
θW, ħ, e, g, g', λ, mZ, mW, mH in classical physics, as the values given by these formulae for a 
compactification scale of the Planck length are to within 1-2% of experimental values. Even in the 
classical physics, it would be expected for these formulae to be modified because their derivation 
ignored any distortion to the S7 particle space due to the non-trivial vacuum structure. All these 
classical values would be further expected to be subject to quantum corrections, which would be the 
explanation sought for the experimental up-down quark mass reversal  relative to the simple heuristic 
classical physics argument in section 6. The calculation of the masses of both the electric and magnetic 
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monopoles is the significant outstanding issue in the development of STUFT, and whether they are 
actually calculable in the classical physics. To the geometrical success of STUFT in deriving the 
parameters of the bosonic sector of electroweak theory, must be added the topological success in the 
fermionc sector of deriving the topological charges of the fermions, despite the colour group issue. This 
specifically includes the derivation of 3 particle families. It seems difficult to square these unreasonable 
successes with the local colour group not being SO(3) and the universe apparently not being closed. 
 A final point is that the principle of maximal symmetry would select the Ricci scalar for the action 
for 10+1 dimensional Einstein action, where the topology of STUFT is the same whatever the curvature 
terms. It should be noted that the derivations of section 5 require the dimensionally reduced 
gravitational action to be that of General Relativity based upon the Ricci scalar, and this may limit the 
possible form of the curvature terms in the 10+1 dimensional action to the corresponding Ricci scalar. 
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